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and /3' (and not the functions themselves) are strongly increasing 
functions of r near the TS region, which can be easily seen by 
differentiating the relevant curves in Figure 4 (see also Figure 
10). We can also infer from this that Gf*' is a stronger function 
of r than is /3' because the ionic potential is much more curved. 
With these observations, we now consider how B behaves with the 
solvent polarity. With increasing C, both Gf and ft' decrease 
at the transition state, since r* diminishes as explained above. 

1. Introduction 
In the preceding article,1 hereafter referred to as part 1, we 

have developed a theoretical formulation to describe the unimo-
lecular SNI ionization process RX - • R+X" in solution. Our focus 
there was on the reaction free energetics and the electronic 
structure of the transition state, features which we examined via 
an implementation of the theory for a model of MJuCl ionization 
in a dielectric continuum solvent. In particular, the S N I solute 
electronic structure represented by its wave function V was studied, 
in a simple two orthonormal valence bond state basis consisting 
of a covalent state ^C[RX] and an ionic state ^1[R+X-], via 

*(M) - Cc-MRX] + C1WR+X-] (1.1) 
where the state coefficients cc, C1 depend on both the RX nuclear 
separation coordinate r and the collective solvent coordinate s. 
(See section 2 and 4A of part 1 for details on this basis set.) 

In the present article, we turn our attention to two different 
aspects of the ionization, namely, the reaction path and the reaction 
rate constant. For this purpose, we again exploit the theoretical 
determination of a two-dimensional free energy surface G(r,s) in 
the RX separation coordinate r and the solvent coordinate s, and 
again implement the theory for the model of the f-BuCl S N I 
ionization described in section 4 of part 1. We examine a wide 
range of solvent polarity, but often specialize to the three solvents 
considered in part 1: acetonitrile, chlorobenzene, and benzene. 

In the usual conception of the SNI ionization, the reaction is 
pictured as the passage of the reaction system over a barrier in 

' Present address: Dept. of Chemistry, Carnegie Mellon Univ., Pittsburgh, 
PA 15213-3890. 

Therefore, the denominator G f - Gf of S grows. The numerator 
behavior with C is not so apparent due to the opposing effects of 
G f and -{P. Howeve, since G f is a stronger function of r, Gf '/2 
- p decreases, and so does the numerator. As a result, 5 diminishes 
with C. We thus conclude that the TS ionic character c'1 wanes 
with increasing solvent polarity. 

Registry No. (-BuCl, 507-20-0; (-BuI, 558-17-8; Me4N+-Cl', 75-57-0. 

the RX separation r, and the transition-state theory (TST) would 
be applied to calculate the rate constant as fc137 for this process.2 

But as has been described generally for reactions in solution3 and 
in particular for the SNI process by Zichi and Hynes,4 and Lee 
and Hynes,5a this usual perspective involving TST assumes that 
equilibrium solvation holds; in particular, the solvent is supposed 
to remain completely equilibrated to the RX solute as the RX 
bond stretches and breaks, and its electronic charge distribution 
evolves, in the passage through the transition state. But this 
assumption is in general not valid: the time scale for the response 
of, e.g., the orientational polarization of the solvent is not suffi­
ciently fast for the solvent to remain so equilibrated. In conse­
quence of these nonequilibrium solvation conditions, the actual 
reaction path departs from the equilibrium path, and the rate 
constant differs from its TST approximation. (For general reviews 
of the extensive recent research on the departure from TST in 

(1) Kim, H. J.; Hynes, J. T. J. Am. Chem. Soc., preceding paper in this 
issue. 

(2) Ingold, C. K. Structure and Mechanism in Organic Chemistry, 2nd 
ed.; Cornell University Press: Ithaca, NY, 1969. Reichardt, C. Solvents and 
Solvent Effects in Organic Chemistry, 2nd ed.; Verlag Chemie: Weinheim, 
1988. Entelis, S. G.; Tiger, R. P. Reaction Kinetics in the Liquid Phase; 
Wiley: New York, 1976. 

(3) (a) van der Zwan, G.; Hynes, J. T. / . Chem. Phys. 1982, 76, 2993. (b) 
van der Zwan, G.; Hynes, J. T. J. Chem. Phys. 1983, 78, 4174. (c) van der 
Zwan, G.; Hynes, J. T. Chem. Phys. 1984, 90, 21. (d) See also: Hynes, J. 
T. In The Theory of Chemical Reaction Dynamics; Baer, M., Ed.; CRC Press: 
Boca Raton, FL, 1985; Vol. 4. 

(4) Zichi, D. A.; Hynes, J. T. J. Chem. Phys. 1988, 88, 2513. 
(5) (a) Lee, S.; Hynes, J. T. J. Chem. Phys. 1988, 88, 6863. (b) Lee, S.; 
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Abstract: The theoretical formulation developed in the preceding article [Kim, H. J.; Hynes, J. T. J. Am. Chem. Soc., preceding 
paper in this issue] is applied to determine the reaction path and rate constant for the SN 1 ionization process in solution RX 
-* R+ + X", illustrated for (-BuCl. It is found that the intrinsic solution reaction path (SRP), which is the analogue of the 
familiar minimum energy path of gas-phase reaction studies, differs considerably from the conventionally assumed equilibrium 
solvation path (ESP). In particular, the SRP near the transition state lies mainly along the RX separation coordinate r. There 
is little motion in the solvent coordinate s; the solvent lags the solute nuclei motion and there is nonadiabatic nonequilibrium 
solvation. Near the reactant configuration RX, however, the critical motion initiating the reaction is that of the solvent, i.e., 
the solvent orientational polarization. The contrasts with activated electron transfer are also pointed out. The connection 
of the two-dimensional (r, s) free energy surface to the potential of mean force is made, particularly in connection with the 
ionization activation free energy, as is the connection to the conventional transition-state theory (TST) rate constant k757, 
which assumes equilibrium solvation. The deviation of the actual rate constant k from its TST approximation (the transmission 
coefficient K = fc//fcTST) due to nonequilibrium solvation is examined, via both linear and nonlinear variational transition state 
theory. Despite the pronounced anharmonicity of the (r, s) free energy surface arising from the electronic mixing of the covalent 
and ionic valence bond states, a simple harmonic nonadiabatic solvation analysis is found to be suitable. This analysis predicts 
progressively larger and more significant departures from equilibrium solvation TST with increasing solvent polarity. 
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solution, see refs 3d and 6.) These issues have been explored for 
SNI systems in refs 4 and 5, but as noted in section 1 of part 1, 
the present theory goes beyond those studies by an explicit and 
proper treatment of the quantum chemical, electronic structural 
aspects of the ionizing RX solute. As detailed in part 1, these 
features play a critical role in the reaction. In addition, we explore 
the influence of a wide range of solvent polarity. 

In the present exposition, we rely heavily on the details of the 
theoretical formulation and model descriptions already given in 
part 1, and focus attention solely on those features necessary to 
find and interpret the SNI ionization reaction path and rate 
constant. It is worth remarking that a simplified version of this 
formalism, but with a microscopic generalization of the solvent 
coordinate, has now been used to examine these features via 
molecular dynamics computer simulation.7 While reaction path 
analyses are quite common for gas-phase reactions,8"1' there are 
very few solution-phase examples. In addition to the SNI studies 
noted above, some studies dealing with aspects of reaction paths 
for SN2 reactions in solution may be found in refs 5,12b, and 12f. 

The outline of this paper is as follows. In section 2, we examine 
the intrinsic solution reaction path and its departure from the 
conventional equilibrium solvation path. The potential of mean 
force and the transition-state theory rate constant kTST are ex­
amined in section 3. The departures of the rate constant from 
the equilibrium solvation kTST values due to nonequilibrium 
solvation are discussed in section 4, while section 5 concludes. 

2. Intrinsic and Equilibrium Solvation Reaction Paths 
We first study the S N 1 ionization reaction path and compare 

this with the conventional equilibrium solvation picture for the 
dissociation. For this purpose, we consider two distinct reaction 
paths for the ionization on the two-dimensional reaction free energy 
surface G{r,s) (eq 3.11 of part 1) 

G(r,s) = Vl(r)c2
c + [V3^r) - AGf(r) - 2AG,(r)s}c\ -

2/3(r)ccc, + fAGf{r)c}{\ - c2) + AGr(r)s2 - A ^ In [r/rQ]2 

(2.1) 

X=PZiIc0C1 + p) 

where PcO), V\(/) are, respectively, vacuum potentials for the 
covalent and ionic valence bond states RX and R+X" in the or-
thonormal two state basis |^C[RX], ^1[R

+X"]), /3(r) is the vacuum 
electronic coupling between the two, and cc, C1, which are functions 
of r and s, are the SNI solute state coefficients in eq 1.1. (See 
section 4A of part 1 for details on the gas-phase J-BuCl diabatic 
potentials and electronic coupling.) Here AGf (r), AGr(r) are the 
self-energies associated with the solvent electronic and orientational 

(6) Truhlar, D. G.; Hase, W. L.; Hynes, J. T. J. Phys. Chem. 1983, 87, 
2664. Hynes, J. T. Annu. Rev. Phys. Chem. 1985, 36, 573. Berne, B. J.; 
Borkovec, M.; Straub, J. E. / . Phys. Chem. 1988, 92, 3711. Hanggi, P.; 
Talkner, P.; Borkovec, M. Rev. Mod. Phys. 1990, 62, 251. Whitnell, R. M.; 
Wilson, K. R. Rev. Comp. Chem., in press. 

(7) Keirstead, W.; Wilson, K. R.; Hynes, J. T. J. Chem. Phys. 1991, 95, 
5256. 

(8) Fukui, K. J. Phys. Chem. 1970, 74, 4161; Ace. Chem. Res. 1981, 14, 
363. 

(9) Miller, W. H.; Handy, N. C; Adams, J. E. J. Chem. Phys. 1980, 72, 
99. Miller, W. H. J. Phys. Chem. 1983, 87, 3811. 

(10) For a recent exposition, see, e.g.: Melissas, V.; Truhlar, D. G.; 
Garrett, B. C. J. Chem. Phys. 1992, 96, 5758 and references therein. 

(11) Miller, W. H. J. Chem. Phys. 1976, 65, 2216. Pechukas, P. Annu. 
Rev. Phys. Chem. 1981, 32, 159. Garrett, B. C; Truhlar, D. G.; Grev, R. S. 
In Potential Energy Surfaces and Dynamics Calculations; Truhlar, D. G., 
Ed.; Plenum: New York, 1981. Truhlar, D. G. Annu. Rev. Phys. Chem. 1984, 
35, 159. Hase, W. L. Ace. Chem. Res. 1983, 16, 258. Pollak, E. In The 
Theory of Chemical Reaction Dynamics; Baer, M., Ed.; CRC Press: Boca 
Raton, FL, 1985; Vol. 3. 

(12) (a) Bergsma, J. P.; Gertner, B. J.; Wilson, K. R.; Hynes, J. T. J. 
Chem. Phys. 1987, 86, 1356. (b) Gertner, B. J.; Bergsma, J. P.; Wilson, K. 
R.; Lee, S.; Hynes, J. T. J. Chem. Phys. 1987, 86, 1377. (c) Gertner, B. J.; 
Wilson, K. R.; Hynes, J. T. J. Chem. Phys. 1989, 90, 3537. (d) Gertner, B. 
J.; Whitnell, R. M.; Wilson, K. R.; Hynes, J, T. J. Am. Chem. Soc. 1991,113, 
74. (e) Huston, S. E.; Rossky, P. J.; Zichi, D. A. J. Am. Chem. Soc. 1989, 
/ / / , 5680. (f) Tucker, S. C; Truhlar, D. G. J. Am. Chem. Soc. 1990, 112, 
3347. 

polarizations (cf. eqs 2.13 and 2.14 of part 1) 

AGT(r) = I - - - W ) 
\«« «o / 
/ x (2.2) 

AG?(r) = l l - ^ - J M s ( r ) 

where Ms(r) is the self-energy associated with the vacuum electric 
field arising from the ionic state charge distribution, determined 
by its wave function ^[R+X"] (eqs 2.9 and 2.10 of part 1). In 
section 2 of part 1, it is shown that AGf (r), AGT(r) are the re­
organization free energies associated, respectively, with the solvent 
electronic and orientational polarizations when the solute electronic 
wave function changes abruptly from the ionic to covalent states 
and vice versa in a Franck-Condon transition. The parameter 
p = 2/3/ftwei, where «el is the electronic solvent frequency, de­
termines the character of the equilibration of the solvent electronic 
polarization to the solute (cf. section 3A of part 1 and ref 13). 
Finally, the solvent coordinate 5 in eq 2.1 is a convenient variable, 
which gauges the nonequilibrium solvent orientational polarization 
configuration P0, (eq 2.7 of part 1), 

P" = ir( f " 7jtml'*1 + ° " S)^c] (Z3) 

where «. and e0 a_re the optical and static dielectric constants for 
the solvent, and G1 and <SC are the vacuum electric fields arising 
from the solute ionic and covalent states, ^1 and \pc, respectively. 
Thus s = 1 corresponds to P0, equilibrated to the solute ionic state 
charge distribution, while 5 = 0 denotes the equilibration to the 
covalent state charge distribution determined by ̂ 0[RX]. Of 
course, s values outside this range are possible; for example, s > 
1 if Por exceeds the equilibrium value for the ionic state. 

As explained in part 1, the nonequilibrium free energy G(r,s) 
is obtained by solving a nonlinear Schrodinger equation (eq 3.6 
of part 1) for the S N 1 solute wave function <& for any given RX 
separation r and solvent coordinate s. The solvent electronic 
polarization is assumed to be always in equilibrium with the solute 
charges and the solvent orientational polarization;1'13 the solvent 
orientational polarization, gauged by s, need not be in equilibrium. 
For illustration, we repeat here the final form of this nonlinear 
Schodinger equation (cf. eq 3.9 of part 1) 

2px - [Vi - Vl - AGf - 2AGj]y = Y2AGfJ[I + f)xy (2.4) 

in terms of the localization and derealization variables x and y 
defined as 

x = c2
c-cl, y = 2ccc,; x2 + y2 = 1 (2.5) 

The localization variable x gauges the extent of charge localization 
for the SNI solute, while y represents how much it is delocalized; 
for example, x = 0 and y = 1 for an equal (thus completely 
delocalized) mixture of the covalent and ionic states, i.e., * = 
{\IV2)[\j/c + \pt]. By solving eq 2.4 for x and>> (and thus cc and 
C1) in terms of r and s and substituting into eq 2.1, we can explicitly 
determine the two-dimensional reaction system free energy G(r̂ j) 
and examine the possible reaction routes for S N I ionization. 

The first of these is the equilibrium solvation path (ESP) in­
troduced in section 3 B of part 1, defined by 

dG(r,s)/ds = 0 (2.6) 

and illustrated in Figure 1 for J-BuCl in acetonitrile and chlo-
robenzene solvents. Along this path the solvent orientational 
polarization configuration is such that the resulting free energy 
is always minimum for any given r. Thus the solvent polarizations 
(both electronic and orientational) maintain full equilibrium with 
the solute charges along the ESP. It has been already pointed 
out in section 3B of part 1 that along the ESP, the relation 

s = S^ = C2 (2.7) 

(13) Kim, H. J.; Hynes, J. T. J. Chem. Phys. 1992, 96, 5088. 
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holds, and thus, along the ESP, s measures the ionic state occu­
pation probability cf for the solute wave function V, i.e., the ionic 
character of the S N I solute. Along this path, the free energy is 
G^Cr) (cf. section 3 B of part 1) 

G^ = ^Cg2 + F?cf»2 - kBT In [r/r0]
2 - 20cg«cf> + AG%y 

(2.8) 

where the equilibrium solvation free energy AG^v(r, cf) is given 
by 

AG^v = (1 - / " ) AGSv3O +/"AGSv1Sc 

2cg"cf + p 

AGSV,BO = -AGJ1CP2 - AGrcf4 = 

AGSv.sc = -[AGf + AGr]cf4 = -( 1 - j - W f 4 (2.9) 

eg, cf are the r-dependent state coefficients for the SNI solute 
equilibrium solvation wave function in the two-state basis. 

The second route is the intrinsic reaction path introduced by 
Fukui for gas-phase systems,8 and generalized to reactions in 
solution by Lee and Hynes.5b It is a steepest descent, zero kinetic 
energy, path from the transition state to the reactant and product 
states given by the solution of 

dG/dr ~ dG/ds ( ' 

where the ^s are the masses associated with the solute nuclear 
separation and the solvent. This will be termed the solution 
reaction path (SRP).5 Once the appropriate masses are defined, 
the SRP is5b the direct analogue of the minimum free energy path 
extensively employed in gas-phase studies.8"10 We stress here that 
along the SRP, the solvent orientational polarization is in general 
out of equilibrium, and in consequence the equilibrium relation 
s = cf does not hold—in this restricted sense, the solvent polar­
ization and the solute electronic structure are decoupled. Here 
we are dealing with nonequilibrium stationary states13,14 and 
nonequilibrium solvation. 

Upon rearranging the above equation, we obtain the instructive 
relation 

dG/ds nsds 

dG/dr = ~H~d~r ( 2 - U ) 

In the limit ^8 -* 0, the right-hand side vanishes (except in the 
special case, not encountered here, where ds/dr diverges). Then 
dG/ds vanishes and eq 2.10 reduces to eq 2.6. Thus in the van­
ishing solvent mass limit, the ESP and SRP coincide and equi­
librium solvation always applies. In actual solvents, the solvent 
is not so compliant: the mass jus(r) associated with the solvent 
orientational polarization is finite. ns(r) (cf eq 3.6 below) is 
proportional to the solvent reorganization free energy AGr(r);

5b 

it thus increases with the separation r, since the solute charge 
separation and dipole moment increase as /-BuCl becomes more 
ionic.4'5 The more strong is the polar solvent-reacting solute 
interaction, the more massive the solvent appears to be. For (tr 
we use the reduced mass of tert-butyl and chlorine. The calculated 
reaction paths are plotted in Figure 1 for CH3CN and C6H5Cl 
solvents.15 

(14) In the context of self-consistent field approximation, see: (a) Kim, 
H. J.; Hynes, J. T. / . Chem. Phys. 1990, 93, 5194. (b) Kim, H. J.; Hynes, 
J. T. J. Chem. Phys. 1990, 93, 5211. (c) Kim, H. J.; Hynes, J. T. J. Phys. 
Chem. 1990, 94, 2736. (d) Kim, H. J.; Hynes, J. T. Int. J. Quantum Chem. 
Symp. 1990, 24,821. 

(15) As noted in section 4B of part 1, there is no solvent coordinate in the 
case of nonpolar benzene solvent, since there is no orientational polarization. 

Kim and Hynes 

Figure 1. Free energy contour maps for f-BuCl in (a) CH3CN and (b) 
C6H5Cl solvents. denotes the equi-free energy lines. The free 
energy difference between two nearby contour lines is 0.1 eV (=2.3 
kcal/mol). For reference, the free energy value for the contour located 
in the upper center map (a) is -3.1 eV while that for the closed contour 
in the center of map (b) is -2.5 eV: (—) solution reaction path (SRP), 
(- - -) equilibrium solvation path (ESP). The displayed coordinates are 
not mass-weighted.5b 

For each solvent case, the two different reaction paths coincide 
only at the three equilibrium solvation states, viz., the reactant, 
product, and transition states; except for these three states, the 
SRP deviates markedly from the ESP. Near the transition state, 
the direction of the SRP is almost parallel to r, while for the ESP 
it is nearly perpendicular; in the latter, the equilibrated solvent 
coordinate *«,(/•) = c\ changes strongly as the solute ionic character 
evolves with changing r. This pronounced disparity indicates that 
the reaction takes place in a "frozen solvent" nonadiabatic solvation 
environment;3'5'12 the barrier crossing takes place almost completely 
in the /--direction, with the solvent acting as a spectator rather 
than as the coupled rearranging partner envisioned in the ESP. 
This solvent lag is an illustration of lack of synchronization in a 
reaction context.16 This lag can be understood as follows.3 Since 
the barrier is rather sharp, it takes only a short time to cross the 
barrier in the r direction. During this brief barrier crossing epoch, 
the comparatively sluggish solvent cannot follow the rapid change 
in the solute. Thus the solvent orientational polarization is almost 

(16) Bernasconi, C. F. Adv. Phys. Org. Chem. 1992, 27, 119; Ace. Chem. 
Res. 1992, 25, 9. 
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Figure 2. Free energy profile along the solvent coordinate s in acetonitrile 
solvent: (a) r « 2.37 A; (b) r « 2.47 A; (c) r « 2.57 A: (—) ground 
state, (- • -) covalent state, (•••) ionic state. 

frozen during the barrier crossing, creating a static nonequilibrium 
environment for the reaction. While it is possible for this frozen 
environment to produce a caging potential along r,3^ in the present 
case the decrease in the potential along r outweighs any increase 
due to solvation disequilibrium, and no caging effect results. 

It is worth pausing to observe that it is often expressed in the 
literature that there is no, or little, solvent component in the 
reaction coordinate in the equilibrium solvation regime. But this 
is not correct and is, in fact, the precise opposite of the state of 
affairs, as evidenced in Figure 1 and discussed extensively else­
where.3"5,12'17 For when equilibrium solvation holds, the solvent 

(17) Ciccotti, G.; Ferrario, M.; Hynes, J. T.; Kapral, R. J. Chem. Phys. 
1990, « ,7137. 
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Figure 3. Charge distributions along SRP and ESP in CH3CN (cf. 
Figure 7 of part 1): (—) SRP, (---) ESP. The filled square denotes the 
transition state. The charge distributions for the two reaction paths differ 
only slightly, although the actual paths in the (r, s) reaction coordinates 
differ rather markedly. This reveals that the ionic state occupation c\ 
and the solvent coordinate s are not in general related along the SRP, 
while the relation s = c\ holds along the ESP. 

molecules must move to maintain equilibrium with the evolving 
charge distribution and nuclear configuration of the reactive solute 
as it passes across the transition state. 

Now we turn to the situation near the reactant state. Here we 
find (cf. Figure 1) that by contrast to the transition-state region, 
the SRP is almost exclusively along the solvent coordinate s up 
to «=4 kcal/mol in the case of acetonitrile, which is almost 15% 
of the total activation free energy. According to this reaction 
picture, the solvent orientational polarization fluctuations constitute 
the most important factor in initiating the ionic dissociation in 
solution. When the initial P01. fluctuations take the system to an 
energetically favorable configuration for the barrier crossing, the 
nuclear motion i n / begins to appear and brings the system over 
the barrier while P0T is essentially fixed.18 A similar phenomenon 
has been observed in a detailed molecular dynamics computer 
simulation of the ascent to the transition state for the CT" + CH3Cl 
SN2 reaction in water.19 

As regards the product state, we notice a striking difference 
between highly polar CH3CN and weakly polar C6H5Cl; the 
product state for CH3CN solvent corresponds to completely 
dissociated ions R+ + X" (i.e., r -*• °°, s = 1), while that for 
C6H5Cl is an ion pair R+X" located at r = 3.44 A and s «= 1, 
indicated by the local minimum in Figure lb. Thus our dielectric 
continuum model predicts a dissociation into ion pairs in weakly 
polar solvents; some perspectives on this are given in section 4B 
of part 1. 

Finally, the above barrier passage at fixed P1x and thus s values 
is more than a little reminiscent of electron-transfer reactions.20,21 

But the S N I reaction is nonetheless quite different in character 
from an activated electron transfer. For consider the free energy 
profile along the solvent coordinate s with fixed r. The free energy 
curves for the ground state and the two diabatic covalent and ionic 
states for f-BuCl in acetonitrile solution along s, which passes 
through the transition state *, are plotted in Figure 2. The 
essential point is that the ground electronic state is characterized 

(18) The SRP is a limiting zero kinetic energy path,5,8 and therefore does 
not include vibrational oscillations of the (mainly) covalent (-BuCl reactant. 
To be sure, such motions occur in the dynamics, and reactant vibrational 
excitation will be important in the S N I reaction,7 as it is in, e.g., the SN2 
reaction.12a,d 

(19) Gertner, B. J.; Whitnell, R. M.; Wilson, K. R.; Hynes, J. T. J. Am. 
Chem. Soc. 1991, 113, 74. 

(20) Marcus, R. A. J. Chem. Phys. 1956, 24, 966, 979; Faraday Discuss. 
Chem. Soc. 1960, 29, 21; J. Chem. Phys. 1963, 38, 1858; Annu. Rev. Phys. 
Chem. 1964, 15, 155. 

(21) For some general reviews, see: Sutin, N. Prog. Inorg. Chem. 1983, 
30, 441. Newton, M. D.; Sutin, N. Annu. Rev. Phys. Chem. 1984, 35, 437. 
Marcus, R. A.; Sutin, N. Biochim. Biophys. Acta 1985, 811, 265. 
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by a single stable well potential, a point also stressed in part 1. 
This is in complete contrast to activated electron-transfer reactions, 
where there is a solvent barrier in s; in the language of Pross and 
Shaik,22 we would say that there is an electron shift rather than 
an electron transfer. Thus the /-BuCl S N I reaction corresponds 
to the strong electronic coupling limit,14a,M where the relatively 
large electronic coupling («13-18 kcal/mol at the transition state) 
obliterates the solvent barrier completely.23 The contrast with 
electron-transfer reactions can be heightened by considering Figure 
3. While the charge separation development is certainly rapid 
in the internuclear separation r as the f-BuCl ionic character 
develops, it nonetheless does not at all have the abrupt Franck-
Condon isoenergetic character associated with pure electron 
transfer (see, e.g., ref 21). Instead there is a considerable free 
energy change of order 10 kcal/mol which accompanies the change 
in r associated with the major change in the ionic character. Thus 
the S N I charge development is strongly coupled to the geometric 
change in r, although not in a linear24 fashion. 

3. Potential of Mean Force and Transition State Theory Rate 
Constant 

In our discussion to date, including that of part 1, we have used 
a two-dimensional (/vr) perspective to discuss, e.g., activation free 
energies and transition-state locations. But this is a perspective 
not available from conventional equilibrium statistical mechanical 
approaches to activation free energetics,25 which are intrinsically 
one dimensional in character. Nor is it available from experi­
mental rate studies, in which activation free energies are inferred, 
in the main, from transition-state theory. In this section, we forge 
the connection of our treatment to both these approaches. We 
have already described the equilibrium solvation path ESP above, 
along which the free energy is G^r). Several examples of this 
were given in section 4B of part 1 and used to locate the transition 
state, as well as stable reactants and products. Here we describe 
first the connection of that free energy to the conventional object 
of equilibrium statistical mechanical calculation and 
simulation—the potential of mean force. We then pass to the 
transition-state theory rate constant, which is most naturally 
expressed in terms of free energy differences connected to this 
potential of mean force. To anticipate a major conclusion of this 
section, we will find that our previous location of the transition 
state here and in part 1 is confirmed. 

At any given r, along the solvent coordinate s, the nonequi-
librium free energy G(r,s) near equilibrium solvation states can 
be written in the harmonic approximation as14 

G{r,s) = G„(r) + y2Ks(r)6s> (3.1) 

where 6s is the deviation from the equilibrium solvation value 
SeqW. eq 2.7. The solvent force constant K„ which measures the 
restoring ability of the solvent when it deviates from equilibrium 
solvation *«,(/•), can be obtained by taking the second derivatives 
of nonequihbrium free energy G(r,s) (eq 2.1) with respect to s, 

B1G T 1 dx(r,s) I 

^ r i dx{r,s) 1 

^ L 1 + 2 - s - J . , (3-2) 
where the derivatives are evaluated at equilibrium solvation. In 
view of eq 2.5, we can see easily that dx/ds in eq 3.2 arises from 
the solute electronic structure change with the solvent coordinate 
s (and thus the solvent orientational polarization). The zeroth-
order solvent force constant K%(r), where the solute electronic 
structure change is neglected, is given by twice the solvent re-

(22) Pross, A.; Shaik, S. S. Ace. Chem. Res. 1983, 16, 363. 
(23) For weakly-coupled J-BuI, however, the solvent barrier persists. See: 

Mathis, J. R.; Kim, H. J.; Hynes, J. T. To be submitted for publication. 
(24) Pross, A. Adv. Phys. Org. Chem. 1985, 21, 99. 
(25) Some simulation and theoretical studies include: Jorgensen, W. L.; 

Buckner, J. K.; Huston, S. E.; Rossky, P. J. J. Am. Chem. Soc. 1987, 109, 
1891. Morita, T.; Ladanyi, B. M.; Hynes, J. T. J. Phys. Chem. 1989, 93, 
1386. See also the extensive references listed in ref 17. 
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Figure 4. (a) Solvent force constant: (—) K^r), (•••) 2AGr(r). The 
solvent mass M1M, which is proportional to AGr(r), thus increases 
smoothly and monotonically with r. (b) Solvent frequency and force 
constant ratio: (—) Ks/2AGt, (•••) w,/wj. 

organization free energy 2AGr(r).
26'27 (The calculation of AGr(r) 

is outlined in part 1, eqs 4.6-4.8 with eq 2.13.) In section 5C of 
part 1, AG1-(J

-) has also been related to the (in principle) exper­
imentally measurable thermodynamic quantity, i.e., the free energy 
of transfer for an ion pair, separated by a distance r (eq 5.12 of 
part 1). 

For acetonitrile, Ks(r) is plotted in Figure 4a. Because of the 
very strong solvent-induced mixing between the pure covalent and 
ionic valence bond states of f-BuCl near the transition state, Ks 

deviates significantly from 2AGr, e.g., at the transition state 
KJ2AGr = 0.55. Thus the actual solvent force constant at the 
transition state is smaller than the zeroth order value by a factor 
of about 2; in a sense, this is a "critical" intermediate point for 
the reaction where solvent fluctuations are large.28 (A similar 
reduction is observed in the MD study of ref 7.) Since the solvent 
mass ns{r) defined by the equipartition theorem 

(5s2(r)) = fcBr/Ms(r) (3.3) 

(26) A difficulty with a continuum model for water solvent is that the 
continuum solvent force constant (eq 3.2 for K%) has an incorrect (increasing) 
trend as the r-BuCl ionizes (cf. refs 7 and 27). For a recent discussion of this 
force constant for ions in water, see: Fonseca, T.; Ladanyi, B. M.; Hynes, J. 
T. J. Phys. Chem. 1992, 96, 4085. 

(27) Carter, E. A.; Hynes, J. T. J. Phys. Chem. 1989, 93, 2184. 
(28) In Appendix B of ref 14b, the renormalization of the solvent force 

constant Ks(r), which arises from the mixture of the solute electronic states, 
has been discussed and related to the solute molecular polarizability. Near 
the transition state, this polarizability is large (i.e., the covalent and ionic states 
mix easily), so that the solute electronic charge distribution adjusts to the 
fluctuating solvent orientational polarization relatively easily compared to the 
reactant or product states. This solute adjustment, in turn, provides an 
environment favorable for the solvent to fluctuate. This explains why the 
solvent force constant is considerably smaller at the transition state. 
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at fixed r for the solvent velocity Si is proportional to AGr(r) 
(Figure 4a),5b the corresponding solvent frequency defined as wa(r) 
= VKs(r)/ns(r) becomes 

a>° ~ [ 2AGr(r) J [ 2 ds \ 
(3.4) 

where o>° is the zeroth-order diabatic solvent frequency; i.e., for 
a diabatic state in the absence of the quantum coupling 

«? = V2AGr(r)/Ms(r) (3.5) 

which is itself independent of r.5b Notice that for any given <o°, 
the solvent mass ns(r) 

M.W = 2AGr(r)/o,°2 (3.6) 

grows in proportion to AGr(r). Here we employ <u° = 15 ps"1.5"-29 

Near the transition state, the solvent frequency is considerably 
lower than u, by almost a factor of 1.5 (see Figure 4b). This is 
purely a quantum mechanical electronic structure effect. The 
extent of the electronic mixing between the two states \l/c,\ in the 
ground state varies with r since the relative mixing is determined 
by the difference in the diabatic energies V01, the coupling ft and 
the reorganization energies AGf, AG,, all of which change with 
r. This differing mixing is completely missing in the classical 
analysis3"5 which prescribed the charge variation as a function 
of r, and is not properly taken into account in early quantum 
treatments.30 

We now proceed to determine the equilibrium potential of mean 
force £«,(/•). This one-dimensional perspective, defined solely on 
the r coordinate and inextricably based on equilibrium solvation 
ideas,3 provides a standard statistical mechanical approach to 
locating the transition state.3d-6'25 (A discussion of its limitations 
will be postponed until section 4.) Gn{r) can be obtained in the 
following steps. First, equilibrium solvation is assumed for every 
RX separation r so that the free energy (minus the solvent 
fluctuations) in r, Gn(r), is the free energy along the ESP, as in 
Figure 1, projected onto the r coordinate. Explicit examples are 
given in Figure 6 of part 1. The solvent fluctuations enter via 
a solvent well Ks(r)5s2/2 at every r in the transverse direction, 
i.e., eq 3.1. In particular, G (̂T-) can be written as 

G^r) = Geq(r)-Ac8T In &(/•) 

= G^r)-kBT In —^~ 
hu,(r) 

(3.7) 

with h being Planck's constant divided by 27r, where the second 
term arises from the partition function Qs(r) for the solvent. In 
particular, a>s(r) is the frequency associated with the solvent motion 
at fixed RX separation r, eq 3.4, and as discussed below is related 
to a solvent entropy effect. Because of the electronic coupling 
between the covalent and ionic states, us(r) varies with r as shown 
above. 

In order to determine the conventional transition state, defined 
as the maximum in the potential of mean force, we look for the 
maximum in G^r). Since the solvent frequency depends on r 
and in particular is smaller near the transition-state region, the 
maximum points in G «,(/•) and G^ir) may not coincide, because 
of the extra temperature-dependent entropic effect associated with 
the inhomogeneity in «s(r). This is an important question to 
consider, for recall that G^r) was employed in establishing SNI 
ionization activation free energies in sections 4B and 5 of part 
1. To be more specific, since ws(r) near the G{r,s) saddle point 
r • r* is considerably smaller (Figure 4b), because of the quantum 

(29) Notice that a different numerical value for the zeroth-order r- and 
!-independent solvent frequency wj only changes the zero of the reaction free 
energy G(/v$). In particular, the force constant eq 3.2 and the frequency ratio 
eq 3.4 are unaffected, since they are not related to the solvent dynamics. The 
transmission coefficient K, however, is influenced by wj (see section 4 below). 

(30) (a) Ogg, R. A., Jr.; Polanyi, M. Trans. Faraday Soc. 1935, 31, 604. 
See also: (b) Baughan, E. C.; Evans, M. G.; Polanyi, M. Trans. Faraday Soc. 
1941, 37, 377. (c) Evans, A. G. Trans. Faraday Soc. 1946, 42, 719. 

mixing of the covalent and ionic states, the second term in eq 3.7 
is correspondingly larger, reflecting a greater entropy associated 
with a wider "pass" in the s coordinate; it thus reduces G^r) more 
near r* than for other values of r. If this effect were to be 
significant, then the maximum location for G0^r) need not be the 
same as that for G01(T-). However, our numerical calculations for 
both polar solvents show that, at room temperature, the r de­
pendence in <jis(r) does in fact not induce any significant shift, less 
than 0.01 A; the same is true over the temperature range (5350 
K) where most solvents remain liquid. This important feature 
ensures that the transition state obtained from G^r) coincides 
with the saddle point in the two-dimensional surface G(/v) as far 
as the r-coordinate values are concerned. 

The conventional transition-state theory (TST) rate constant 
would then be the one-way equilibrium flux (Z+)R across r*, 
normalized by the reactant-state partition function.31 This yields 

* T S T = cr>R 
kBT &(;•*) 

» G*ibQs(r
K) 

exp[-AG*/*B7j 

= — exp[-AG^/kBT] 

where the activation free energy 

AGN, = Geq(r») - G^r*) 

(3.8) 

(3.9) 

contains the solvent entropic terms and oiR is the /--vibrational 
frequency of the reactant well located at /* with free energy value 
G f̂/1*). Most experimental activation free energies are determined 
via the TST rate in the form3132 

* = k™K = (kBT/h) exp[AGeV*Bn (3-10) 

which in effect defines the experimental activation free energy 
AG*xp, and where K is a transmission coefficient associated with 
recrossing of the transition state to be studied in section 4. On 
combining eqs 3.8-3.10, we have 

AG* = AG' -kRT\n eq (3.11) 

Upon inserting typical values K « 0.5 - 1 (cf. section 4), wR « 
570 cm"1,33 and again a>s(r

R)/«s(r*) ~ 1.5, we find that, within 
the described framework, AG*X_ is smaller than AG 1̂ by 51 
kcal/mol. The very existence of such a difference is generally 
unappreciated; it is significant in terms of assorted highly detailed 
activation parameter analyses to be found in the literature,34-35 

although its magnitude is certainly within the errors incurred by 
our usage of a dielectric continuum model. Such a difference and 
especially its ingredients would be difficult to sort out experi­
mentally. For a general discussion of the difficulties of dissecting 
experimental activation parameters, see, e.g., ref 36. Computer 
simulation7 could, however, also be used for this purpose. Our 
numerical estimates for -log k (k in s~>) are 7.7, 8.6, and 12.3 

(31) Glasstone, S.; Laidler, K. J.; Eyring, H. The Theory of Rale Pro­
cesses; McGraw-Hill: New York, 1941. For a modern exposition, see, e.g.: 
Steinfeld, J. I.; Francisco, J. S.; Hase, W. L. Chemical Kinetics and Dynamics; 
Prentice-Hall: Englewood Cliffs, NJ, 1989. 

(32) For an extensive reference list, see ref 1. 
(33) Dollish, F. R.; Fateley, W. G.; Bentley, F. F. Characteristic Raman 

Frequencies of Organic Compounds; Wiley: New York, 1974. See also: 
Williams, R. C; Taylor, J. W. J. Am. Chem. Soc. 1973, 95, 1710; the authors 
used 585 cm"1 for <A Grasselli, J. G.; Ritchey, W. M. Atlas of Spectral Data 
and Physical Constants for Organic Compounds; CRC Press: Cleveland, 
1975, where OJR = 560 cm"1 is reported. 

(34) Abraham, M. H. J. Chem. Soc, Perkin Trans. 2 1972, 1343; Prog. 
Phys. Org. Chem. 1974, / / , 1; in Advances in Solution Chemistry; Bertini, 
I., Lunazzi, L., Dei, A., Eds.; Plenum: New York, 1981. Abraham, M. H.; 
Grellier, P. L.; Nasehzadeh, A.; Walker, R. A. C. / . Chem. Soc, Perkin 
Trans. 2 1988, 1717. 

(35) Koppel, I. A.; Palm, V. A. Org. React. (Tartu) 1969, 6, 213. Pono-
mareva, E. A.; Kulik, N. I.; Dvorko, G. F. Org. React. (Tartu) 1974, / / , 333. 

(36) Albery, W. J. Amu. Rev. Phys. Chem. 1980, 31, 227. 
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for CH3CN, C6H5Cl, and C6H6 solvents, respectively; the cor­
responding experimental values34 (estimated from high-temper­
ature data35 for C6H5Cl and C6H6) are 8.6,11.3, and 12.1. The 
main source of the large -log k discrepancy for C6H5Cl is the 
activation free energy difference of ~ 3 kcal/mol between the 
theoretical and experimental estimates (see section 4B of part 1). 

4. Transmission Coefficient 

We now turn to the transmission coefficient K = k/k1®7 which 
measures the deviation of the reaction rate from the conventional 
equilibrium solvation picture and k787.3 The departure from the 
conventional equilibrium solvation TST rate constant eq 3.8 based 
on the potential of mean force in eq 3.9 is caused by the following. 
The reaction route with Gx^r) is the ESP in eq 2.6 by construction; 
the conventional equilibrium solvation theory thus explicitly posits 
that the solvent orientational polarization maintains its equilibrium 
with the reactive solute charge distribution during the passage 
through the transition state. But this full equilibrium postulate 
is drastically violated in many charge shift reactions;3"6-7'1217 in 
particular, we have seen in section 2 the strong nonequilibrium 
deviations which occur in the S N I ionization reaction path. 

In an approximation to be justified below, we neglect the an-
harmonicity associated with the solvent frequency «s(r), i.e., its 
r dependence, and calculate K by employing a simple harmonic 
model due to van der Zwan and Hynes.3 In this case, the 
transmission coefficient /c is given by3b,c 

K = k/kTST = « S / « _ L = «||/a)b,eq (4.1) 

where «», «j . are the normal mode frequencies along and per­
pendicular to the SRP, and a>beq is the frequency along the ESP 
projected onto the r coordinate. Most of our discussion below is 
couched in terms of the first form of eq 4.1. This form is the result 
of harmonic two-dimensional transition-state theory37 on the G(rj) 
surface. The TST dividing surface is orthogonal to the SRP at 
the G(r,s) saddle point. In the (r,s) coordinate system, it lies off 
the s axis and has some r mixed into it. Along this orthogonal 
coordinate, the (bound) frequency is W1. On the other hand, the 
ESP perspective is perhaps most naturally exposed in the (r,hs) 
coordinate system, where 8s = s - s(jq(r).

3b'':'5bl2b The orthogonal 
coordinate at the saddle point is defined by r = /•*, i.e., the &s axis. 
Along this coordinate, the (bound) frequency is «s. The ratio 
W1/«s in eq 4.1 reflects just this difference.38 

As shown by Lee and Hynes,5b eq 4.1 can be written as 

«b,n ^ 

-1/2 

«b,n; 
1 + 

g2 

*>b,n 

•1/2 

(4.2) 

where «b n a is the nonadiabatic barrier frequency "seen" by the 
solute reaction system at short times, 

w{m = -tf&G/d^U (4.3) 

calculated with the solvent frozen at s = s*, and g is the solute-
solvent coupling 

g~ 
1 d2G 

dsdr 
= -2 

AG, dc\ 

dr 
(4.4) 

Table I. Calculated Frequencies for S N I Ionization0*' 

" 2 " j . « | | ">b,eq <"b,na 

C6H3Cl 13.1 16.1 62.5 77.1 61.8 
CH3CN 11.1 17.0 70.8 108.7 69.6 

V-g 
24.5 
30.4 

"Unit: ps"1. bTransition (and reactant) state separations are given 
in paper 1, section 4B. 

point on the free energy surface. The normal mode frequencies 
«n and W1 can be expressed in terms of wbna, «s, and g as3b'c*5b 

1 

.,2 = -

(ws
2 - Wg1J - («? + W ^ ) 

(«s
2 - w{m) + (ws

2 + wg,na) 

1 + 
4 ^ 

1 + 

(«? + *>b\„a)2 

(u2 + "U)2 

* l / 2 * 

1/2 

(4.5) 

Equation 4.2 is the expression for * originally derived via 
Grote-Hynes theory39 by van der Zwan and Hynes3 in the no­
nadiabatic frozen solvent limit,3"512 and should be appropriate 
for S N I reactions.4,5 Our model calculations based on the 
(equivalent) first member of eq 4.1 yield /c «= 0.65 for r-BuCl 
ionization in CH3CN and K « 0.81 for C6H5Cl. For the former 
case especially, this is a noticeable departure from the equilibrium 
solvation TST prediction. It is worth remarking that a K value 
in this range has been found in a molecular dynamics computer 
simulation of a model for the t-BuCl ionization in water by 
Keirstead et al.,7 as has the applicability of eq 4.1. It is instructive 
to note that, by contrast, Kramers' theory40 incorrectly predicts7 

a very much smaller K value «0.019, a general feature anticipated 
in ref 4. 

The results for the transmission coefficient can be understood 
in several ways. The first form in eq 4.1 is,3,5 as noted above, a 
generalized variational transition-state3,5,10'11 perspective, in which 
the solvent lagging of the f-BuCl ionization /•-motion is accounted 
for by following the passage over the barrier along the true reaction 
coordinate, the SRP (albeit in the harmonic approximation); along 
this path there are no recrossings. The second form in eq 4.1, 
as well as eq 4.2, arises from a one-dimensional perspective along 
r in which recrossings of the transition state at r* are accounted 
for by dynamical solvent time-dependent frictional effects ac­
cording to the Grote-Hynes theory,39 which has proved successful 
in accounting, for example, for computer simulations of a wide 
range of reaction classes7,123"0'17'41"43 and in the interpretation of 
experimental rates;44 indeed eq 4.2 is the nonadiabatic solvation 
limit of that theory, involving the initial time value of the time-
dependent friction. In that description, the supposed reaction path 
is along the ESP, projected onto the single dimension r, so that 
the picture is that of motion along the potential of mean force; 
then nonequilibrium solvation leads to a solvent friction and is 
responsible for recrossings and a concomitant K value less than 
unity; equivalently, the reactive frequency W| is less than the 
equilibrium barrier frequency «b „,. The connection between the 
two perspectives (including the coordinate rotation necessary to 
interconvert them) is discussed in more detail in refs 3, 5, and 
12b.45 

where we have used eqs 2.4, 2.5, and 2.7 in going from the second 
to the last member. Equation 4.4 explicitly shows that the so­
lute-solvent coupling depends upon the S N 1 electronic structure 
variation along the RX separation coordinate r, in a fashion similar 
to the solvent force constant Ks in eq 3.2. All the frequencies in 
eqs 4.1-4.4 are evaluated at the transition state, which is a saddle 

(37) See refs 8-11 for a discussion for reactions in the gas phase. 
(38) Since s^r) is a function of r, there is a nonorthogonal transformation 

between (r, 5s) and (r, s), so that the dividing surface r = r* in the (r, 5s) 
system maps into the surface r = r* in the (r, s) plane, rather than being 
orthogonal to the line s = $«,(/•) in that plane. See refs 3, 5, and 12b,f for 
further discussion. 

(39) Grote, R. F.; Hynes, J. T. J. Chem. Phys. 1980, 73, 2715. 
(40) Kramers, H. A. Physica 1940, 7, 284. 
(41) Bergsma, J. P.; Reimers, J. R.; Wilson, K. R.; Hynes, J. T. / . Chem. 

Phys. 1986, SJ, 5625. 
(42) Zichi, D. A.; Ciccotti, G.; Hynes, J. T.; Ferrario, M. J. Phys. Chem. 

1989, 89, 2093. 
(43) Zhu, S. B.; Lee, J.; Robinson, G. W. J. Phys. Chem. 1988, 92, 2401. 

Berne, B. J.; Borkovec, M.; Straub, J. E. J. Phys. Chem. 1988, 92, 3711. 
Roux, B.; Karplus, M. J. Phys. Chem. 1991, 95, 4856. 

(44) Bagchi, B.; Oxtoby, D. W. J. Chem. Phys. 1983, 78, 2735. Ashcroft, 
J.; Besnard, M.; Aquada, V.; Jonas, J. Chem. Phys. Lett. 1984, 110, 430. 
Zeglinski, D. M.; Waldeck, D. H. J. Phys. Chem. 1988, 92, 692. Sivakumar, 
N.; Hoburg, E. A.; Waldeck, D. H. J. Chem. Phys. 1989, 90, 2305. Park, 
N. S.; Waldeck, D. H. J. Phys. Chem., in press. McManis, G. E.; Weaver, 
M. J. J. Chem. Phys. 1989, 90, 1720. 
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Figure 5. Transmission coefficient versus the solvent polarity factor C 
= e'J - ejj1. For simplicity, we have assumed in the numerical calculation 
(denoted as —) that e. = 2; the dashed line is the smooth extrapolation 
to C = 0, made due to an instability in the numerical calculation for very 
small C. Transmission coefficients for benzene («o = 2.27), chlorobenzene 
(e„ = 2.33, e0 = 5.62), and acetonitrile (e„ = 1.81, c0 = 35.94) solvents 
are marked by filled squares. 

As illustrated in more detail below, there is a strong electrostatic 
coupling between the S N I solute and the solvent, especially for 
high polarity. T h e reason tha t K is so close to unity despite the 
strength of the solute-solvent coupling inducing recrossing (and 
despite the large nonequilibrium solvation effects apparent in the 
reaction path) is the sharpness of the barrier, e.g., wb n a ~ 70 ps"1 

(Table I ) . This provides a strong local driving force favoring 
product formation, and solvent-induced recrossings occur only to 
a modest extent even though the solvent is nearly "frozen".3-5 '12 

W e now turn to a general examinat ion of the K variation with 
solvent polarity. The result obtained by using the first member 
of eq 4.1 with w° = 15 ps"1 is displayed in Figure 5 versus the 
(Pekar ) solvent polari ty factor C 

1 1_ 
«o 

(4.6) 

As the solvent polarity C increases, so does the solvent reorgan­
ization free energy AGr at the transition state via eq 2.2, since 
the transition-state location r* changes little with C (cf. Figure 
8a of part 1). In fact, AGr at the transition state and the solvent 
polarity C are almost proportional to each other. Accordingly, 
hereafter we will use them interchangeably. We find a mono-
tonically decreasing transmission coefficient with increasing solvent 
reorganization free energy AG, at the transition state and thus 
with the solvent polarity. 

In order to analyze K, we will employ eq 4.2. We can first 
simplify this somewhat; since by numerical calculation u>b na » 
g2, Co, for the sharp barr ier J-BuCl react ion (Table I ) , we can 
expand the parallel frequency <o„ in eq 4.5 to obtain 

(4.7) «1 ~ «>b,na 
wb,na 

t i tuted into eq 4.2, yields 

['•-^1 "b.na 

1/2 

[" / 1 < n a "8J 

-1/2 

(4.8) 

A further consistent simplification is possible. Since ^ / c o j na S 
0.03 according to numerical calculations for a wide range of solvent 
polarity (Table I ) , the transmission coefficient change with C is 

Figure 6. Solvent and nonadiabatic barrier square frequenc1-" "ersus the 
solvent polarity factor C: (—) o>2/ 102, (•••) ulj 104, (- • - u>l/106. 
Because of the linear behavior of decreasing u\ and increasing a>b,„a with 
C, the product wlmu>l is a parabolic function of C and varies little in a 
wide range of solvent polarity (3 < «0 < 80). 

mainly determined by the second term in the second bracket of 
eq4.8 

1 + 
f 

«b.na^s 

-1/2 

(4.9) 

In order to analyze the solvent polarity dependence of this, we 
first consider the denominator in eq 4.9, i.e., the solvent frequency 
o)s and the nonadiabatic barrier frequency wbna. As shown by the 
numerical calculations displayed in Figure 6, u\ decreases mon-
otonically and linearly with the solvent polarity factor C, while 
wb,na grows with C. The diminishing solvent frequency arises from 
the feature that the solvent inertia MS increases (the solvent appears 
more massive), with the solvent reorganization free energy AG1. 
(eq 3.5) and thus with C (The corresponding increase in Ks is not 
as rapid, due to solute polarizability.28). The u>bna behavior is 
associated with the fact that at the diabatic crossing point between 
the ionic and covalent curves in solution, the ionic slopes steepen 
with increasing C (cf. Figure 9 of part 1); this results in a larger 
curvature when the smooth ground-state surface is obtained by 
taking into account the electronic coupling term /3. Owing to these 
opposite trends, the product cobnaw

2 does not depend very strongly 
on the solvent polarity.46 Figure 6 shows that the relative change 
in the product is ;S25% for a wide range of solvent polarity (3 < 
«0 < 80). The major factor in the * variation with C then is the 
solute-solvent coupling g in eq 4.9, which explicitly depends upon 
how the SNI solute electronic structure changes as the system 
passes through the transition state (cf. eq 4.4). We discuss this 
next. 

In analyzing the solute-solvent coupling g, we will focus our 
attention on the higher solvent polarity regime, since it is here 
that K is smallest. From eq 4.4, this requires calculation of the 
variation of the delocalization variable x, eq 2.5, with respect to 
the RX separation coordinate r. By differentiating eq 2.4 with 
respect to r, using the relation xdx/ds + ydy/ds = 0 derived from 
the normalization condition eq 2.5, and utilizing the equilibrium 
condition eq 2.7, we find 

dx 
' dr eq OX 

y{V°c -V°i' + AGf" + 2AG/5) - [/2x(pAG?y + 2x0' 

IyP-X(V0C-VI + AG?1 + 2AG^) - ]/iypi\G? 
(4.10) 

(45) An extension of aspects of the (linear) variational transition-state 
treatment of ref 3 to include many harmonic coordinates is given in: Pollak, 
E. / . Chem. Phys. 1986, 85, 865. For subsequent work, see: Pollak, E. J. 
Chem. Phys. 1991, 95, 533 and references therein. 

(46) This is rather interesting in that the solvent mass effect associated with 
M5, realized as diminishing solvent frequency with growing C, is almost com­
pletely offset by the nonadiabatic barrier frequency wbna. This cancellation 
was not noticed in the classical analysis.3-5 
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Figure 7. Solute-solvent coupling g, eq 4.4, versus the solvent polarity 
factor C. 

where V%, V^, and /3 are the diagonal and off-diagonal elements 
of the vacuum Hamiltonian for (-BuCl in eq 2.1, and AGf, AG, 
are the solvent reorganization free energies, eq 2.2, associated with 
solvent electronic and orientational polarizations. Here' denotes 
an ordinary r derivative. As shown in part 1, especially Figure 
8b there, the transition state is rather delocalized except for weakly 
polar solvents (̂ 0 S 10) so that x « 0, y « 1 (cf. eq 2.5). Equation 
4.10 then reduces to a simpler form at the transition state: 

6V 

V°c' - Vl' + AGf + AG/ 

4/3 - pAGf 
(4.11) 

Our model J-BuCl system is characterized by a rather large 
electronic coupling (£ «15-18 kcal/mol) in the transition region 
2.4 A 5 r <, 2.7 A (thus p = 0.3-0.4 with rtcod ~ 4 eV), while 
AGf « 15-18 kcal/mol for tw = 2 (cf. section 5 of part 1); thus 
the denominator in eq 4.11 is always positive and remains nearly 
constant except for weakly polar solvents. The numerator is also 
positive, since the diabatic ionic potential V\ is a decreasing 
function (Figure 4 of part 1), while both the covalent curve VQ 
(Figure 4 of part 1) and the solvent reorganization free energies 
AGf, AG, (cf. Figure 4a) decrease in the transition-state region. 
Therefore, dcj/dr\t > 0; the ionic character of/-BuCl increases 
as the RX bond stretches farther from its transition-state bond 
length r* with the solvent coordinate fixed at its transition-state 
value s*. This agrees with the charge evolution along the two 
reaction paths shown in Figure 3, although the solvent coordinate 
s is allowed to change with r there (rather than remain fixed). 
We also notice here that the solvent orientational polarization term 
AG,' in eq 4.11 is at best one-half of the entire solvent contribution. 
Moreover, the r-gradients of the vacuum diabatic potentials are 
much larger in magnitude than the solvation term. Therefore, 
we conclude that 6Vi/6V|t is nearly independent of the solvent 
reorganization free energy AG, and thus the solvent polarity factor 
C, except for weakly polar solvents (̂ 0 S 10) where the r* variation 
with C has a more pronounced effect. 

Since the solvent mass is proportional to AG, via eq 3.6, we find 
from eqs 4.4 and 4.11 that tie solute-solvent coupling g is negative 
and 

?-
2u°2AGr 

Hr (4.12) 

Since by our discussion above the ionic character gradient term 
in the bracket depends rather weakly on the reorganization free 
energy AG, and thus on the solvent polarity factor C (at least for 
highly polar solvents), we can conclude that g2 <* AGn which is 
confirmed numerically in Figure 7. In fact, the magnitude of 
the solute-solvent coupling g increases as a square root of C in 
almost the entire solvent polarity range (3 < C0 ^ 80) investigated 
numerically. Thus the more polar the solvent is, the larger is the 

Kim and Hynes 
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Figure 8. Rate constant and transverse frequency in eq 4.13 versus r in 
CH3CN: (—) log fc(r), (•••) a±(r). The variation in the frequency 
transverse to the SRP, ax(r), does not induce a change in the transi­
tion-state location. The r value of the minimum in log k(r) is the same 
as that of the saddle point, r* = 2.47 A. 

solute-solvent coupling; for example, the g ratio between CH3CN 
and C6H5Cl is calculated to be about 1.5 (Table I). We naturally 
expect that a successful reactive trajectory involves at the transition 
state more solvent motion for highly polar solvents due to a larger 
solute-solvent coupling than for weakly polar solvents. This results 
in the observed decrease in the transmission coefficient with solvent 
polarity.47"49 

Finally, we can also calculate the reaction rate based on a fully 
nonlinear variational transition-state treatment,5 where the har­
monic approximation is not made. For the same reason as en­
countered in the G«, calculation in section 3, i.e., the strong in-
homogeneity in d>s(r) due to the quantum mixing of covalent and 
ionic states, the transverse mode frequency w± in eq 4.1 also varies 

(47) To see how sensitive K is to Jl, we compare the transmission coeffi­
cients for two different values, 15 ps"°and 30 ps"', for OJJ. Since neither the 
force constant Ks nor the reorganization free energy AG, is affected by aij,2' 
the solvent mass associated with «J = 30 ps"1 is four times smaller than that 
for aij = 15 ps"1 for any given r via eq 3.6. We thus would expect the 
transmission coefficient with uj = 30 ps"1 to be larger than that with «J = 
15 ps"1 due to a diminished inertial effect. The numerical results confirm this, 
although what accounts for this increase in « is not the solvent inertia as 
explained below. Another interesting feature is that the relative «increment 
is very small (less than 4%) while the solvent mass ns is reduced by a factor 
of 4 and the solvent frequency as is doubled. Equations 3.4 and 4.12 may be 
the most revealing on this. Both the square solvent frequency oi2 and the 
solute-solvent coupling g scale the same way when we change aij, i.e., they 
grow as a>°. Therefore the inertial effect associated with uf is exactly can­
celled by g in the second square bracket of eq 4.8. Thus the observed ~4% 
increase in K arises from the first bracket term in eq 4.8; the increase in the 
solute-solvent coupling g rather than the reduced solvent inertia is responsible 
for the transmission coefficient change. 

(48) In the nonadiabatic solvation limit,3"5'12 the solute-solvent coupling 
g is related to the initial time value of the time-dependent friction f(t) in the 
one-dimensional generalized Langevin equation associated with the motion 
along r by f(0) = gVu2 (refs 3, 4, and 39). For the high solvent polarity case, 
an approximate analytic expression for «s is available with an assumption of 
a delocalized transition state using manipulations similar to those for g in 
section 4: 

[ 40 - P&G? y 

This yields the initial friction approximation 

2AGr (V%'~ Vf + AGf + AG/)2 

S-(O)' 
V-, (4/3 - pAG?)(4|3 - pAGf1 - 2AGr) 

Since g2 increases linearly with C (Figure 7) while m\ is an almost linearly 
decreasing function (Figure 6), the initial friction value f(0) grows in a 
hyperbolic fashion with solvent polarity. Numerical calculations confirm this. 

(49) The nonadiabatic solvation frozen solvent limit discussed here will 
typically not apply for broad barrier reactions, for which the solvation dy­
namics per se will play an important role.3Ai2acl7 
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along the SRP; the notation «x(r) is thus appropriate.53 To see 
how this might affect the reaction picture, we follow Lee and 
Hynes5b and consider a rate-like expression k(r) defined at each 
point (r, s) on the SRP: 

. . . kBTQ±(r) f GSRP(/Q- GR ] 
*W = - r — - exp — (4.13) 

h QfQl I k*T J 
Here Qf and Q\ are, respectively, the functions associated with 
the two normal modes parallel and perpendicular to the SRP at 
the reactant state, and Q1(^r) is the partition function for the 
transverse mode at a point (r, s) on the SRP. The corresponding 
free energies are GR and G8""^), respectively.50 In the nonlinear 
variational transition-state theory,5 the reaction rate is determined 
by the minimum value of k(r). (This is strictly analogous to the 
procedure carried out in gas-phase variational TST studies.9"11) 
Because of the inhomogeneity in u±(r) and the associated entropy 
effect, this minimum may not occur at the saddle point (/•*,$*) 
on the free energy surface; it rather could be shifted to a different 
r value owing to the competition between GSRP, which favors the 
standard transition state, and entropic contributions associated 
with O)1(Z-), which favor a displaced transition state. To explore 
this possibility, we have numerically scanned the local region near 
the saddle point following the SRP and have calculated k(r), 
evaluating the partition functions classically. Figure 8 shows the 
result, as well as the local behavior of w±(r), for CH3CN. The 
T range was ±0.08 A so that (/^"V) was within ~kBT of the 
saddle point, and the step size was 1 X 10"5 A. oiL(r) increases 
with r in the saddle point region because of the increasing angle 
of the SRP relative to the r axis (cf. Figure la). This results in 
more of a contribution from the higher frequency r motion, al­
though clearly the s contribution is dominant. It can be seen from 
Figure 8 that although o}±(r) is not constant, the minimum in k(r) 
corresponds to the same saddle point value that we have employed 
heretofore. Thus as for the potential of mean force and «,(/•), 
the inhomogeneity in u±(r) plays no significant role, a conclusion 
consistent with that of ref 5a. In particular, the transition-state 
location is not sensitive at room temperature to the entropic 
contributions because of the moderate variation of «_,.(/•); this is 
in contrast5* to high-temperature gas-phase reactions where 
analogous frequency variations can lead to marked variational 
transition-state shifts,911 a reflection of the greater importance 
of entropy at higher temperatures. This ensures that the trans­
mission coefficient obtained from eq 4.1 is indeed a valid measure 
for the deviation from the conventional equilibrium solvation 
theory. 

(50) Since the SRP is a single-valued curve in (r, s) coordinates, the r value 
completely specifies a location on the SRP. 

In 1977 Borden and Davidson introduced the concept of disjoint 
nonbonding molecular orbitals (NBMOs) and showed how this 

5. Concluding Remarks 
In this paper, we have used the electronic structure-based 

two-dimensional free energy formulation of part 1 to find that 
there is significant deviation from the equilibrium solvation path 
for a model of the f-BuCl SNI ionization in solution. This deviation 
arises from a solvent lag as the system crosses the transition state, 
as indicated by the disparity between the solution reaction path 
and the equilibrium solvation path. This lag occurs despite the 
strong solute-solvent coupling, proportional to the change of the 
S N I solute ionic character with the nuclear separation. 

With the aid of linear and nonlinear variational transition-state 
theory, we have predicted that these nonequilibrium solvation 
effects can lead to marked departures of the rate constant from 
its equilibrium solvation transition-state theory approximation, 
especially for more polar solvents. This leads to a solvent polarity 
dependence of the rate over and above that due to the true ac­
tivation free energy. In addition to their intrinsic interest as 
indicators of dynamic solvent-induced transition-state recrossing 
and deviations from the equilibrium solvation path, such departures 
which depend on the solvent polarity, can contribute factors of 
«1 kcal/mol to the apparent free energy of activation. This is 
not an insignificant effect in terms of the detailed level of activation 
free energy analysis often presented in the literature for SNI 
reactions.3435 

We expect that reaction path and rate features similar to those 
that we have found will also arise in other reaction classes such 
as twisted intramolecular charge transfer51,52 and photoioniza-
tions,53 where significant charge variation occurs along nuclear 
coordinates due to electronic mixing involving ionic states. 

Finally, many of the features described here are confirmed in 
an application of a variant of our formulation to a microscopic 
level molecular dynamics simulation of a model of the J-BuCl SNI 
ionization in water.7 

Acknowledgment. This work was supported in part by NSF 
Grant CHE88-07852. We thank Dr. W. Keirstead and Professor 
K. R. Wilson for useful discussions concerning the potential of 
mean force. 

Registry No. f-BuCl, 507-20-0. 

(51) Barbara, P. F.; Kang, T. J.; Jarzeba, W.; Fonseca, T. In Perspectives 
in Photosynthesis; Jortner, J., Pullman, B., Eds.; Kluwer: Dordrecht, 1990. 
Barbara, P. F.; Jarzeba, W. Adv. Photochem. 1990, 15, 1. 

(52) Kim, H. J.; Hynes, J. T. Solute Electronic Structure and Solvation 
in Time-Dependent Fluorescence: I. Formulation and Application to a 
Two-State Model, to be submitted for publication. Kim, H. J;, Simon, J. D.; 
Hynes, J. T. Solute Electronic Structure and Solvation in Ti me-Dependent 
Fluorescence: II. Three-State Model, to be submitted for publication. 

(53) See, for example: Goodman, J. L.; Peters, K. S. / . Am. Chem. Soc. 
1985, 107, 6459. Spears, K. G.; Gray, T. H.; Huang, D.-Y. / . Phys. Chem. 
1986, 90, 779. 

concept can be used to rationalize the ground-state spin preferences 
of conjugated biradicals—molecules possessing two NBMOs 
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Abstract: The concept of disjoint nonbonding molecular orbitals (NBMOs) has been extended from its original application 
to biradicals to molecules with more than two NBMOs. It is shown how the disjointness of NBMOs in polyradicals can be 
related to their spin preferences. Ab initio molecular orbital calculations are reported which demonstrate the validity of the 
disjoint NBMO analysis. 
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